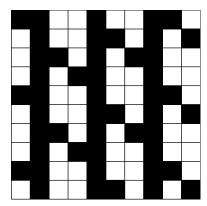
Les nombres cachés 2

Y. Noël-Roch

1. Solution

Voici d'abord les solutions des fenêtres 3, 4 et 5 proposées dans le numéro précédent.



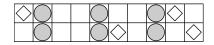
a = 3b = 4

Coin supérieur gauche de la fenêtre csg = 20.

Fenêtre 3

Nous devinons a=3 en remarquant 2, 5, et 8. Les trente cases de ces trois colonnes ne peuvent pas appartenir à la même famille que c_1^1 et c_9^1 . Ces deux cases sont donc occupées par des multiples de b.

Ainsi la première ligne peut induire b=8. Mais observons à la fois $\boxed{1}$ et $\boxed{2}$

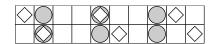


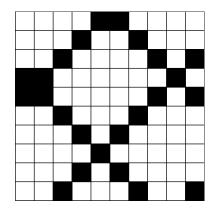
2 impose b=4 ... et cela n'est pas contredit par 1 à condition que c_5^1 soit occupé à la fois par un multiple de a et de b.

La double appartenance $c_5^1 \in a\mathbb{N}^*$ (1) et $c_5^1 \in b\mathbb{N}^*$ est d'ailleurs suggérée d'une part par les colonnes, d'autre part par les escaliers descendants mais il faut pour cela observer **globalement** la fenêtre 3.

Nous connaissons l'interprétation exacte des deux premières lignes :

^{1.} $a\mathbb{N}^*$ désigne l'ensemble des multiples naturels non nuls de a, c'est-à-dire $\{a, 2a, 3a \dots\}$. $c_5^1 \in a\mathbb{N}^*$ signifie que le nombre caché dans la case commune à la 1^{re} ligne et la 5^{e} colonne est un multiple non nul de a.





$$a = 7$$

$$b = 8$$

$$csg = 3$$

Globalement, 8 peut être repéré dans les « escaliers descendants » et 7 dans les « escaliers montants ».

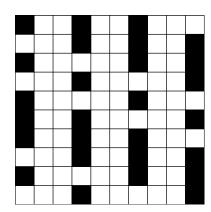
Fenêtre 4

Mais globalement, $\boxed{4}$ montre que a > 6 et b > 6.

Dans la troisième ligne, c_8^3 ne peut être ni de la même famille que c_3^3 , ni de la même famille que c_{10}^3 . Donc c_3^3 et c_{10}^3 contiennent tous les deux des multiples du même nombre et a=7.

 $\overline{}$ livre alors $c_1^5 \in 7\mathbb{N}^*$ et $c_8^5 \in 7\mathbb{N}^*$. Il reste c_2^5 et c_{10}^5 qui sont nécessairement associés, donc

b = 8



$$a = 6$$

$$b = 9$$

$$csg = 6$$

1 entraı̂ne $a \neq 3$ puisque c_{10}^1 n'est pas noire. Il faut donc que c_1^1 et c_7^1 soient dans la même famille, donc a=6.

Fenêtre 5

Dans 9, $c_{10}^9 \notin 6\mathbb{N}^*$ (2) puisque c_4^9 n'est pas noire. D'autre part, c_{10}^9 et c_7^9 ne peuvent appartenir à la même famille. Donc c_{10}^9 et c_1^9 sont occupées par des multiples de b et b=9.

2. Tableau initial de largeur L variable

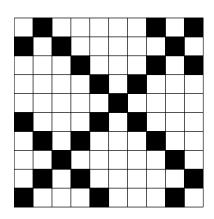
Jusqu'ici, les fenêtres étaient découpées dans le tableau 1 pour lequel L=15. Dans la suite, nous utilisons des **tableaux initiaux de largeur** L **aléatoire** avec $10 \le L \le 20$.

Rappelons les conditions:

 $10 \leqslant L \leqslant 20$, $3 \leqslant a \leqslant 10$, $3 \leqslant b \leqslant 10$, $a \neq b$

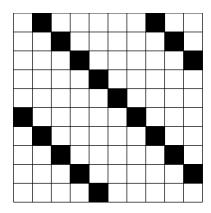
Recherche les valeurs de a, b, et L qui ont permis d'obtenir la fenêtre suivante :

^{2.} $c_{10}^9 \notin 6\mathbb{N}^*$ signifie que le nombre caché dans la case commune à la 9^e ligne et la 10^e colonne n'est pas un multiple naturel non nul de 6.



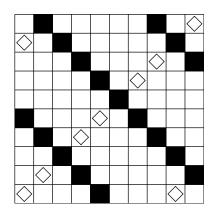
Fenêtre 6

Dès la première ligne, nous pensons à 6 ou 8? 6 et 8? a=6 est très plausible si nous associons c_2^1 à c_8^1 , c_3^2 à c_9^2 , c_4^3 à c_{10}^3 ... et plus globalement les « escaliers descendants » de la fenêtre 6.



Connaissant a = 6, le décalage d'une ligne à la suivante indique que $L \in 6\mathbb{N}^* - 1$. (3) (Il manque une case par ligne pour que les multiples de 6 se placent en colonnes). Comme $10 \leq L \leq 20$, L peut valoir 11 ou 17 à ce stade de l'analyse.

Observons les autres cases hachurées :



La périodicité implique que **toute** la diagonale montante est occupée par des multiples de b. Ainsi $c_9^2 \in b\mathbb{N}^*$ donc c_1^2 et c_9^2 appartiennent à la même famille : $c_1^2 \in b\mathbb{N}^*$ et $c_9^2 \in b\mathbb{N}^*$, donc b=8.

Le décalage des multiples de 8 d'une ligne à la suivante montre que $L \in 8\mathbb{N}^* + 1$.

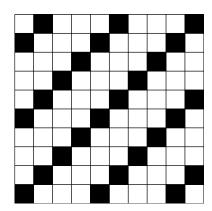
Les conditions $L \in 6\mathbb{N}^* - 1$, $L \in 8\mathbb{N}^* + 1$ et $10 \leq L \leq 20$ imposent L = 17. Si cela t'amuse, tu peux enfin déterminer le contenu du coin supérieur gauche de la fenêtre : c'est le nombre 23.

^{3.} $6\mathbb{N}^*-1$ désigne l'ensemble des multiples non nuls de 6 diminués de 1, c'est-à-dire $\{5,\,11,\,17,\,23,\,\ldots\}$.

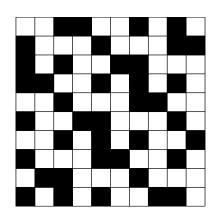
3. Des jeux!

Sachant que : $10 \leqslant L \leqslant 20$ et $3 \leqslant a \leqslant 10$ et $3 \leqslant b \leqslant 10$ et $a \neq b$,

détermine ces trois nombres dans chacune des situations suivantes.



Fenêtre 8



Fenêtre 7

Fenêtre 9

Bon courage \dots la suite au prochain numéro!